3

Further Developments and
Applications of the Finite
Fourier Transform

In actual applications, most mathematical methods have to deal with finite
data sets. Thus it is not surprising that the finite Fourier transform is the
main tool among transforms in applied research. Two topics in communica-
tion science have been selected to illustrate the use of the finite Fourier
transform: signal filters and windows in Section 3.1 and signal detection in
the presence of noise in Section 3.2. These make use of the operations of
convolution and correlation. The implementations of these techniques would
be impossible without present-day computers and an efficient algorithm for
the numerical work. The fast Fourier transform (FFT) operating principles
are given in Section 3.3. Finally, in Section 3.4 we let the dimension of the
vector space grow without bound. In this way we arrive at the Fourier series
and integral transforms which are the subjects of Parts II and III. The sections
are mutually independent except for Section 3.2, which relies somewhat on
concepts developed in Section 3.1. Otherwise, they can be read in any order.
The References should be consulted if the reader wishes a wider picture of
the applied technology.

3.1. Convolution: Filters and Windows

The operation of convolution between the components of two vectors
in 7N does not commonly appear in ordinary vector analysis but is quite
important in the applications of the Fourier transform to communication
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102 Part I - Finite-Dimensional Fourier Transform [Sec. 3.1

theory and technology. We shall first introduce this operation in a rather
general setting and then particularize to the case of interest as applied to
signal filtering and windowing.

3.1.1. The Coordinate-by-Coordinate Product Relative to a Basis

Let f and g be two vectors in #¥, with coordinates {f,}¥-, and {g,}¥-,
in the e-basis (see Sections 1.1 and 1.2). Construct now a vector he 7%
whose coordinates in the same basis are

hnzfngm n=12,...,N, (31)

i.e., simply the coordinate-by-coordinate product of the first two vectors. We
denote thus

h=1(e)g, 3.2
defining a mapping from ¥ x ¥V into ¥~ which we call the product of
vectors f and g relative to the e-basis. To determine the coordinates {#,}¥_,

of h in (3.2) in any other &-basis obtained from the first one through a trans-
formation V (see Section 1.2), we perform

l'—lm = z (V_l)mnhn = Z Vn:nlfngn
= Z Vi Z Vnk.sz: Vu&i
n k [

= Z CVe S8 (3.3)
k,l
where
CR = > Vil Vol (3.4

are the coupling coefficients for the e-basis coordinates.

The definition of the product (3.1)-(3.2) is quite simple. It does not
appear in ordinary three-dimensional vector analysis since it does not seem
to have found any meaningful application. In Fourier analysis, we shall see
that it is quite useful.

Exercise 3.1. Show that the bilinear product (3.1)—(3.2) is commutative,
associative, and distributive with respect to vector addition. Perform the proof in
the e- and &-bases. What symmetries are implied for the coupling coefficients
(3.4)?
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3.1.2. Coupling Coefficients and Convolution

If the transformation V in (3.3)-(3.4) is the Fourier transform, the
coupling coefficients are particularly simple:

CH = > FhFula
= N 32 exp[2min(m — k — I)/N]

= N2, ., (3.5)
The expression for £, is then called the convolution of f, and g,:

Em = N-12 angm—n =N~ me—ngn = N—l/z(f* Ems (3.6)

where all indices are counted modulo N.

3.1.3. Product in the Fourier Basis

If the product (3.2) is now made relative to the ¢-basis,

k=1f(p)g, (3.72)
namely,

Ew = fum» m=12,...,N, (3.7b)

then the e-basis coordinates of the vectors involved can be found using the
coupling coefficients (3.4) for the inverse Fourier transform. These are only
the complex conjugates of (3.5), so that

kn = N_llzzfmgn—m = N~12 Zﬁt—mgm = N—llz(f* g)n- (38)
These formulas have been collected in Table 1.1 at the end of Chapter 1.

Exercise 3.2. Using the Schwartz inequality, show that for (3.7)-(3.8)

[kl < N=1f]2]g]>. (3.9)
Note for the product (3.1)-(3.2) relative to any basis 8 this implies that
If@®)gll < N*2|f] (gl (3.10)

3.1.4. Signals

In discussing applications in signal filtering we shall first consider the
product (3.7) of two vectors relative to the ¢-basis and define what we mean

Input output
signal Filter signal
e i
s Q s'
Fig. 3.1. Signal filtering.
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here by a signal vector s and a filter Q, showing then that the convolution

G3.7-(3

.8) describes the output of the signal through the filter (see Fig. 3.1).

A signal s is an N-dimensional vector whose coordinates in the e-basis
represent the input data to a ““black box” system. This can be a telephone
conversation, a space probe coded message, or any other form of information
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Fig. 3.2. (a) Signal. (b) Fourier transform of the signal. Real components are indicated

by open circles, while imaginary components are denoted by crosses. As is
customary, we are representing the Fourier-transformed components—the
frequency domain—as extending on both sides of the m = 0 = N component.
(c) Filter. (d) Transfer function of the filter [Fourier transform of (¢)]. This is a
low-pass filter which annuls the high-frequency components. Its transfer
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which has finite length and which from the point of view of experiment can
be taken to consist of a finite—albeit large—number of discrete data values.
The consideration of discrete rather than continuous signals is here motivated
by our mathematical construct but in practice corresponds to the impossi-
bility of experimentally handling an actual infinity of data points. In Fig.
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function is real and symmetric under reflections m «» —m; correspondingly, (c) exhibits
the same characteristics. The product of (b) and (d) is (f), whose inverse Fourier
transform is (e), the output filtered signal; (e) is thus the convolution of (a) and (c).
Note that the suppression of the high-frequency components of the signal results in
oscillations of the output in the neighborhood of its *“discontinuities.”
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3.2(a) we show an example of a signal s with coordinates s,, n = 1,2,..., N.
In Fig. 3.2(b) the partial-wave content of s is shown: Equation (1.51b)
states that

s, = N2 % 5, exp(—2mimn/N), (3.11)
which displays the signal s as a sum of waveforms ¢p,, with amplitude propor-

tional to §, (see Fig. 1.3). The quantities p,* = |§p|? for m =1,2,..., N
constitute the power spectrum of the signal s.
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Fig. 3.3. (a) Signal (the same as in Fig. 3.2). (b) Fourier transform. (c) is the high-pass
filter and (d) is its Fourier transform, i.e., the transfer function of the filter.




Sec. 3.1]

3.1.5. Filters

Chap. 3 * Further Developnients 107

When the input signal s is fed into the “black box” signal processor in

Fig. 3.1 it is converted into an output

signal s’. If a linear combination of

input signals s = ¢;8; + ¢38,, €1, ¢3 €%, is converted into the linear com-
bination of the corresponding output signals s’ = ¢;8] + ¢.85, the box acts

as a linear operator Q and s’ = Qs. To
in a given basis, we can test the box

find the matrix || Q,,| representing Q@
with unit pulses: We let s = ¢, for
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The product of (b) and (d) is (f). The output

T

filtered signal is (¢). The latter shows that

under high-pass filtering it is mainly the ‘“ discontinuities”” of the signal which remain.
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n=12,..., N successively and then find the components s,, = (g, s") of
the output signal, thus constructing Q,, = s, for n,m = 1,2,..., N. The
testing can also be done using the waveforms N ~/2 exp(— 2#inm/N), which
constitute the signal s in (3.11). In this case, welets = ¢, forn = 1,2,..., N,
find the components §;, = (¢, s’), and construct @ as represented by
Oum = 5 for n,m = 1,2, ..., N. Now, if the black box is such that wave-
forms of a given frequency are converted into waveforms of the same frequency,
with only a possible change of amplitude and phase, the device will here be
called a filter. (In actual technology, the meaning of a filter is very often
widened to include any linear operator.) In this case, for a given s = ¢,
input, we obtain an output s’ = §,¢@,, §, being a complex number, n =
1,2,..., N. The set of coefficients {G,}3-, is called the transfer function of
the filter. It is easy to see that @ is then represented in the ¢-basis by a
diagonal matrix Q = |8,,4,|, and any input signal (3.11) will produce an
output s’ with partial-wave coefficients

§p = GnSns n=12...,N; ie, s = (l(<P)S (312)

For a particular wave input s = ¢,, when §, = 1, the wave passes through
the filter undistorted, while if |§,| > 1 or |§,| < 1, the wave will be enhanced
or attenuated.

Exercise 3.3. Show that if §,, the transfer function of a filter, is complex, its
phase arg g, determines a phase shift in the signal waveform. This shift, in units
of data point separation, is ¢, = —(N/2mn) arg §,. Devices such that |§,| = 1
and o, = constant (modulo N) are delay filters. Notice that as we are working
here with the tools of finite-dimensional spaces, a delay filter would pass the last
part of the input to the beginning of the output.

3.1.6. Low- and High-Pass Filters

If low frequencies are enhanced and high frequencies are attenuated,
i.e., if §, is large for » near O (recall the coordinates are numbered modulo N
and see Fig. 1.3) and small for n near N/2, we have a low-pass filter. If high
frequencies are enhanced and low ones correspondingly suppressed, the filter
is a high-pass one. In Fig. 3.2(d) we have drawn the transfer function of a
“rectangular” low-pass filter and in Fig. 3.2(c) its inverse transform. The
output signal partial-wave coefficients (3.12) are shown in Fig. 3.2(f) and the
output signal in Fig. 3.2(e). The latter is the convolution of the input signal
Fig. 3.2(a) and the transform [Fig. 3.2(c)] of the transfer function. In Fig. 3.3
a rectangular high-pass filter has been applied to the same signal. Note that
the power spectrum of the output signal (3.12) is simply p§, = p,.°|§..|> This
is unchanged for delay filters (see Exercise 3.3).

We are generally interested in upgrading the quality of signals, not in
degrading it as Figs. 3.2 and 3.3 may suggest. Transmission lines or storing
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devices act in many ways as filters which attenuate the high-frequency com-
ponents which constitute the “fine detail” of a signal. A high-pass filter
which enhances these components can be used to restore the signal to its
original sharpness. The proper transfer function of this upgrading filter is
determined by determining the transfer function of the degrading process.
Of course, if some frequencies are entirely suppressed, they cannot be
restored ; the effect of noise (to be described in Section 3.2) happens also to
be most important in the high-frequency region, so practical considerations
exist which curtail the possibilities of these devices.

Exercise 3.4. Assume that the input signal is passed through two (or more)
filters with different transfer functions §$* and 4. These may be placed in series
[Fig. 3.4(a)] or in parallel [Fig. 3.4(b)] w1th a signal-summing device. Show that

Fig. 3.4.

the filter arrays can be replaced by a single filter whose transfer function is
g, = 452 in the first case and §, = ¢’ + 52 in the second.

Exercise 3.5. An averaging filter produces an output signal s’ whose com-
ponents relate to the input signal s as sp = (s + Sn-1)/2. Find the transfer
function of such a filter to be §, = [1 + exp(2win/N)]/2, and see that it enhances
the lower frequencies. Note that, as an operator, the filter can be expressed by
Q@ = (1 + R)/2, where R is the rotation operator of Section 1.6. Such a filter
will smooth out a signal and can be expected to reduce the noise (see Section 3.2).

Exercise 3.6. A differencer filter relates output to input by sp, = (S — Spm-1)/2.
Find the transfer function, and see that it enhances the higher frequencies. A
differencer filter will pick out changes in signal intensity and accentuate bound-
aries much like a Xerox copier when reproducing gray-tone images. Note that
the second-difference operator A of Sections 1.5 and 2.2 can be used as a filter
too. Its spectrum tells us that it also enhances higher frequencies.

3.1.7. Windows

Our presentation of filtering devices has been overly optimistic. We have
implied that the signal as a whole can be filtered when needed. A telephone
conversation or even a speech spectrogram cannot be conveniently handled
in this way. What must be done in these cases, roughly, is to break the full
signal into consecutive pieces—time windows—each of which consists of a
reasonably small set of data points which can be filtered and Fourier-analyzed
separately. The process of windowing the signal corresponds mathematically
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to multiplying the signal points s,, n = 1, 2, ..., N, by a window function w,,
n=1,2,..., N, which admits only data points between n, and n, and
rejects all others: As a first example, we consider a rectangular window
function:

1, n, <n<n,
rn={’ Tasiista (3.13)

0, otherwise.
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Fig. 3.5. (a) A “smooth” signal [representing the function in Eq. (2.38a)] and (b) its
Fourier transform, exhibiting vanishingly small high-frequency components.
(c) A rectangular “time window”” and (d) its Fourier transform. The latter has
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The output signal of such a windowing device is

S = Pl ie, s =r(e)s. (3.14)
In Fig. 3.5, we have used the rectangular window function [Fig. 3.5(c)] on a
“smooth” signal [Fig. 3.5(a)] with little or no high-frequency components
[Fig. 3.5(b)]. In chopping up a signal in this way [Fig. 3.5(e)], we are paying
the price, due to the abruptness of the chop, of introducing spurious high-
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significant components for all frequencies. (¢) The chopped signal [the product ot

(a) and (c)]. (f) Fourier transform of (e) and convolution of (b) and (d). The appear-
ance of high-frequency components is an artifact of the abrupt window function.
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frequency components [Fig. 3.5(f)] which misrepresent the signal. This is an
artifact of the window function we have used and can be seen to stem from
the fact that the rectangular window function has a Fourier transform which
is quite spread out in side lobes, with significant high-frequency components.
The high-frequency components in Fig. 3.5(f) are a result of §, being the
convolution of §, with this spread-out window-transform function. This
effect is termed leakage. To reduce the leakage effect it is desirable to use a
window function whose Fourier transform has side lobes as small as possible.
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Fig. 3.6. (a) A triangular window function and (b) its Fourier transform. Side lobes are
smaller here than in Fig. 3.5(d). (c) The smooth signal in Fig. 3.5(a) cut by this
window exhibits smaller high-frequency components than in Fig. 3.5(f).
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Instead of a rectangular window, a triangular function (Fig. 3.6) can be used,
as its Fourier transform has smaller side lobes. An even better choice is the
Hanning function, which has a (1 — cos 0) form in its nonzero range (Fig.
3.7). The price paid for these improvements in the smoothing of the window
is that there must be some window overlap in the description of the signal so
that none of the signal components is slighted for falling at the edge of the
window.
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Fig. 3.7. (a) The Hanning function and (b) its Fourier transform. As the latter has
negligible side lobes, the windowed ‘““smooth” signal in Fig. 3.5(a), having
basically no high-frequency components, (c), is expected to be acceptably
“smooth” as well.
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Exercise 3.7. Consider amplitude modulation of a carrier wave <. by a signal
s, The total input signal would then be s,

Sn = (@Inss’ = 5,.°N ~12 exp(—2micn/N). (3.15)

Show that the partial-wave coefficients of s are those of s° but shifted by ¢ units:
Sm+c ~ Sm°. Amplitude modulation can be used to transmit a very ‘“smooth”
signal, constituted only by low frequencies, through a communication line which
strongly attenuates these frequencies. Shortwave AM radio, for instance, uses the
transmission properties of electromagnetic waves of appropriately high frequency
for the coding of low-frequency signals. FM, on the other hand, codes the signal
into the Fourier transform components §, with proper time windowing.

We have tried to give an inkling of how the Fourier transform and
convolution appear in communication. Clearly, to go into more details
would take us to a very broad field. The reader interested in this area will
definitely benefit from browsing through the books by Lee (1960) and
Schwartz and Shaw (1975) and that of Jenkins and Watts (1968) on signal
processing and applications of spectral analysis as well as the book by
Brigham (1974) on basic Fourier transform applications, which also contains
a good list of the source literature. A delightful field of application is that of
speech analysis and synthesis. A very readable article by Flanagan (1972) and
a book by Flanagan (1971) are suggested.

3.2. Correlation: Signal Detection and Noise

Signal detection in the presence of noise is one of the most important
problems in communication. The concepts developed in Fourier analysis will
be used to state some of the relevant variables and to broadly outline the
strategy of solution. We start by defining the correlation of a string of signal
data.

3.2.1. Correlation

Consider a sesquilinear operation mapping ¥ x ¥~ into ¥~ relative
to a basis—for definiteness we shall consider here the ¢-basis—as the
component-by-component product

kn = f¥gn, m=12,..., N, f,gke?", (3.16)

Except for the complex conjugation in the first factor, this operation is
basically the product introduced in Section 3.1, and its properties are quite
similar. The distinct usefulness of (3.16) appears when we translate it to a
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relation between the e-basis coordinates of the vectors involved. These can
be found through the inverse Fourier transform

k"' = Z ank'm = Z anfmgm
= Z Fmﬂ; kafk*zl:F:zgz- 3.17)

Exchanging sums and using (3.5) with an appropriate relabeling of indices,
we find

b= N> (e on= N2> £X 0, = N7E(for),,
n=12...,N, (3.18)

which we define as the correlation between f and g.

Exercise 3.8. Show that in terms of the rotation operators R" of Section 1.6
the correlation (3.18) can be written as

kn = N~"2(fcg)n = N~2(f, R"g). (3.19)

Exercise 3.9. Using the result of Exercise 3.8, the fact that R is a unitary
operator and the Schwartz inequality show that the norm of the correlation
vector in (3.18) satisfies

Ifeg| < N*=|f] [g]. (3.20)

This is the analogue of a similar result on convolution given in (3.10).

The correlation assigns a set of numerical values to the “closeness”
between the signal f and the signal g; if these are real and such that f, and g,
have generally the same sign, (fcg), will be a sum of generally positive terms
and hence large. If we find some component /among the (fcg), to be unusually
large in comparison with the others, we can conclude either that f,, and g,,_,
have generally the same sign or that a large component or components in f
have met its or their counterpart in g. The number / gives the /ag between
the two.

3.2.2. Autocorrelation

Examine now the case when f = g, the autocorrelation function of f
being the k, in (3.18). Of course

ko = N-2(fcf), = N-22|f|?, (3.21)

but what happens to k, for n ““close” to 0? If the signal f is such that the f;,
are a ““smooth” or slowly varying function of m, f;, ., will still have generally
the same phase and magnitude as f;,, and so will f,.,, etc. The correlation
function k, is thus expected to have a more or less broad real peak around
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Fig. 3.8. (a) Periodic signal and (b) its autocorrelation. (c) *““Two-peak” signal [Fig.
3.2(a)] and (d) its autocorrelation. (e) “Smooth” nonperiodic signal and (f) its
autocorrelation.

n = 0. The width is determined by the distance j at which f,, ; still has the
same phase on the average as f;,, before sign cancellations start occurring in
the sum (3.18). If now the signal f;, is periodic in m with period P (P divisor
of N), then f,, = f,,.,p for [ integer and k;» = k,. The correlation function
will exhibit peaks spaced by P units and will itself be periodic. In Fig. 3.8(a)
is a periodic signal and in Fig. 3.8(b) its correlation function; other signals
[Figs. 3.8(c) and (e)] also have characteristic correlation functions [Figs.

3.8(d) and (£)].
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Fig. 3.8 (continued)
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Exercise 3.10. Show that the autocorrelation function k, = (fcf), is even
in n and cannot have a value Jarger than k, in (3.21). You can use the Schwartz
inequality on (3.19).

Exercise 3.11. Show that the Fourier transform of the autocorrelation function
is the power spectrum p,’ = |f,|? of f.

The autocorrelation function k,, we have seen, gives a numerical
value of the “degree of similarity” between a signal and its image shifted
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Fig. 3.9. (a) Constant-density noise and (b) Gaussian noise. The histograms to the right
divide the ordinate range in 20 ‘““bins,” showing the characteristics of the
distribution. (The latter were built on the basis of 1024 points rather than 64,
as in the figures, in order to reduce random fluctuations.) (c) and (d) are

by n units. Suppose now we construct a “signal” v whose values v,,, m =
1,2,..., N, are extracted from a random-number table or computer genera-
tor. Since no two values of the list are causally related, we can expect the
autocorrelation function to have only a large k, value, but all other k,’s to
fluctuate randomly. In Fig. 3.9(a) this is shown for a vector v constructed by
a computer intrinsic *“function” which produces a random sequence of real
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the autocorrelations of (a) and (b), respectively. Notice the peak at the N = 0
component of the correlation vector and the otherwise uneventful noise-like appear-
ance of all other components. (¢) and (f), Fourier transforms of (a) and (b), also have a
noise-like character, showing comparable contributions from each frequency range.

numbers between — 1 and 1 with constant probability density. This means that
as the list of generated numbers tends to infinity, the proportion of those which
fall in any interval (v — Av/2, v + Av/2) < (=1, 1) is indepenent of the
value of v. A histogram to the right of the figure shows this. The autocorrela-
tion function in Fig. 3.9(c) is seen to exhibit only the peak at k,. The same
happens with random sequences with Gaussian probability densities [Fig.
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Fig. 3.10. White noise (a) built by requiring that all Fourier partial-wave coefficients
have unit modulus (open circles) while their phases (crosses) be randomly
distributed in (—, m) with constant density (histogram at the right). In terms
of the real and imaginary parts of the Fourier coefficients (b), the probability
density has a csc mx shape (see the histograms at the right—unbroken lines for
the real parts and dotted lines for the imaginary parts). By inverse Fourier
transformation, white noise (c) is obtained. As before, all histograms were
built with 1024-component vectors, while the figures have only 64 points.




Sec. 3.2] Chap. 3 * Further Developments 121

3.9(b)]. Figures 3.9(¢e) and (f) are the Fourier transforms of Figs. 3.9(a) and
(®).

Exercise 3.12. Are there reasons to expect that as N grows without bound,
k,—0forn # 0?

3.2.3. White Noise

Signals with random components are generically referred to as noise.
This is a good working definition which describes the kind of background
“signal” produced by the thermal agitation of electrons in radio or radar
receivers and amplifiers. A broader ““definition” of noise in communication
is any “unwanted” part of the signal; of course this varies from case to case..

As Fig. 3.9 suggests, the definition of noise is not unique. For standard-
ization purposes in filtering, it is common to define white noise as that which
has the same power spectrum at all frequencies, i.e., such that p,’ = |7,|? =
constant, so that only the phase of individual Fourier coefficients takes a
random sequence of values. This is shown in Fig. 3.10.

Exercise 3.13. Note that a filter Q can change the characteristics of the
noise input v. Consider an averager and a differencer filter, and examine the
correlation of the output. See that for these two cases k¥’ = +1ko," + random
terms.

3.2.4. Signal Detection and Filtering of Noise

Noise is the part of the input signal s we usually want to get rid of. We
consider s = s, + v, s, being the ““true” signal and v the noise. In detecting
signals s, we should separate clearly two kinds of situations: first, when we
have a fair idea of what s, should be and we are interested in detecting the
presence or absence of the signal, and second, when s, is unknown and only
its overall characteristics—as distinct from those of noise—can be used for
filtering s. The first situation corresponds, for instance, to radar technology,
while the second was typical of early telephony.

The detection of known signals amid background noise is usually tackled
by finding the correlation, in a time window, of the incoming signal. If s is a
train of square pulses (Fig. 3.11), it has a correlation function which is quite
distinct from that of v [Figs. 3.9(c) and (d)]. The correlation of s = s, + v
1S §oCSo + SoCv + ves, + vev. The shape of the first term, when present,
can be recognized in Fig. 3.11. Moreover, the correlation can also be used to
detect any change undergone by the signal. The return pulse of a radar
bouncing off the surface of a planet, for instance, will yield the distance to the
body by the travel-time lag; the Doppler shift due to the planet’s radial
velocity away or toward the observer will lengthen or shorten the pulses,
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Fig. 3.11. Signal detection amid noise by correlation. (a) Periodic signal and (b) its
correlation. (¢) Constant-density noise and (d) its correlation. (e) Signal plus
noise at a ratio of 1:3. The noise masks the signal, whose presence can

while the pulse shape will be changed by surface characteristics such as
rugosity and ground reflexivity.

For the filtering of signals of which we have no a priori knowledge, the

solution is not so clear-cut, and in fact the information of the “true” signal
s, is never fully retrievable. An averager filter (see Exercise 3.5) has a transfer
function which attenuates the high-frequency components. If these are
suppressed in the input (Fig. 3.12), the total noise power (3, |#,]%) will be
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nevertheless be detected by (f) correlation. The observed peaks and their periodicity
match those of the signal, so we conclude that (e) contains a signal. The more data points
we have, the more effective the detection by correlation becomes.

diminished to a greater extent than the total “true’ signal power (3, |§ox|?).
The output is a “smoother” signal in which s, should be recognizable. If the
noise-to-signal ratio (total noise power/total “true’’ signal power) is large,
this method—or any other filtering scheme—may not prevent loss of signal

informati

on.

A generally successful way to overcome the difficulties inherent in
signal filtering is to digitalize the data to be transmitted, coding them into
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Fig. 3.12. Partial noise elimination by filtering. (a) A ‘““smooth” signal [Fig. 3.5(a)] plus
25%, white noise [Fig. 3.10(c)]. (b) The Fourier transform of the noisy signal
contains large low-frequency components due to the signal [Fig. 3.5(b)] and
essentially a constant high- and low-frequency noise background [Fig. 3.10(b)].
Filtering with a low-pass device whose transfer function is shown in Fig. 3.5(c)
in the frequency domain, we obtain (c) the filtered signal. The small wavelets
are the noise residue. Narrowing the filter’s passing band would only distort
the signal farther from its true shape. Broadening it would allow for more
noise wavelets.
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pulse sequences of ““expected” shape [as in Fig. 3.11(a)] such that on arrival
the message can be detected by correlation. On-the-spot planet photographs
are scanned as by a TV image, but tones of gray are divided into, say, 32
values. The transmitted data will then consist of a string of numbers in this
range, each in binary code whose digits, O or 1, are given by the absence or
presence of a pulse. In this way, we trade the range of possible shades of gray
(which is not too important, as 32 tones give a very accurate rendering of the
picture) for protection against image degradation.

As in Section 3.1, the reader is urged to explore the source literature if he
wishes to have more specialized information on the actual signal detection
technology. See also the books by Papoulis (1965), Schwartz et al. (1966,
1970, and 1975), Gold and Rader (1969), Otnes and Enochson (1972),
Stieglitz (1974), and Bloomfield (1976).

3.3. The Fast Fourier Transform Algorithm

Sections 3.1 and 3.2 point to the fact that the actual evaluation of the
finite Fourier transform has a considerable range of application. Although
the number of data points must in practice be finite, it can be very large, say
on the order of 10® or 10% requiring a considerable amount of expensive
computer time. An algorithm for the evaluation of the Fourier transform
involving a drastic reduction in its computational complexity—by a factor
of N/log, N—was discovered recently by Cooley and Tukey [see Cooley and
Tukey (1965); see also Cooley et al. (1967)].

3.3.1. Computational Complexity of the Longhand Fourier Transformation

Let us analyze the number of arithmetic operations required to calculate
the Fourier transform {f,}¥_, from a given set of complex data points
{fu}¥-1. The “longhand” calculation proceeds by

N
Ju=N"127% f expQmimn/[N) form=1,2,...,N. (3.22)
n=1

First, (a) one has to calculate exp(27i/N) and then its N — 1 powers, as these
will appear as factors in (3.22). Then (b) one has to perform the (N — 1)2
products of f,’s with these exponentials (for » or m equal to N the exponential
factor is 1, so no product is necessary). Last, (c) there are N(N — 1) sums to
be performed. The overall factor N ~/2 need not be considered, as it is
usually absorbed into a redefinition of the Fourier transform in actual
applications.

Typical computer times required for the operations of real, single-
precision, floating-point sum and product, including memory access, are on
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the order of 25pusec for the PDP-11/40, a medium-small computer. A
medium-large computer such as the Burroughs 6700 requires around 7 usec.
If we round off the complexity of (3.22) as N2 sums and N2 multiplications,
the computer work needed for N around 1000 is comprised of some 2 million
complex operations. This represents some 6% min on the first and 2 min on
the second computer. Even if machine time were unlimited and free, the
Fourier transform would not often be used for real-time data analysis unless
a considerably more efficient algorithm were found. The fast Fourier trans-
form (FFT), for N = 21° = 1024, leads to a 100-fold saving factor.

3.3.2. N Divisible by 2

Suppose that N is divisible by 2. The index »n can be replaced by
2r + k — 1 and the sum (3.22) split into

Fam NS S f s expl2nir + k= Dm/N]
=271 S expl2miCk — DmNIWN/2 2 > forsr—s expl2mirm/(NJ2)].

(3.23)
The second sum,

N/2

Fra= N2> forsr—y exp(dmirm{N) = fiviz.ems (3.24)
r=1

is the N/2-dimensional Fourier transform, for £ = 0, of the odd-numbered
f»’s and of the even-numbered f,’s for k = 1. The determination of all the
fn’s in (3.24) involves 2(N/2)? multiplications since we have two values of k
and we need perform the Fourier transform only for m = 1,2,..., N/2.
Once these have been calculated, we can merge the f’s as

Sm = 27 2exp(—2mim/N)f$,m + fiml, m=1,2...,N. (3.25)

This process involves N products. The total number of multiplications in the
algorithm (3.24)-(3.25) is thus N?/2 + N and about the same for sums. For
large N this represents roughly a halving of the computation time.

3.3.3. N Divisible by 27

The reduction in computation complexity need not stop here: the
N/2-dimensional Fourier transform (3.24) may be subject to the same process
when N/2 is even. We need only replace r by 2s + k, — 1,5 = 1,2, ..., N/4,
defining a f,?zkl as the N/4-dimensional transform of the f,’s with n =
0, 1, 2, 3 mod 4 and the merging (3.25) between the f2’s and f*’s. The general
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recursion for N divisible by 2? involves, first, the (2~?N)-dimensional Fourier
transform [which we write without the constant (2-?N)~*/2, which should
go in front],

2=PN
fzf,,---kzkl,m = Z f;lp(r,k) exp(2? *1mirm/N) = flf,,---kzkl.z"n+m, (3.26a)
r=1

where
ny(r, k)= 2% + 2774k, — 1) + -+ -+ 2(ky — 1) + (k, — 1). (3.26b)
The following p steps are the mergings (again, eliminating the factor 2-%/2),
L e = [€XD(—2%im[N) [, sierm + Flq - yevicr,mbs
m=12,...,27"%N,g=p,p—1,...,1, (3.27a)
where the last step is
fl=N-Yf m=12,..,N. (3.27b)

The number of multiplications in the algorithm (3.26)-(3.27) is (27?N)? for
the Fourier transform (3.26) and N for each merging.

334. N =2

The regression in the dimension of the Fourier transform ends when it
reaches 1, since then we have no sums or multiplications at all. Thus consider
N to be the vth power of 2, i.e., N = 2". Then, for p = v,

fl:v-nkzkl = fast,i» (3.28a)
as r and m can only take the value 1, and
n(l, k) =240+ 2%k, = 1) + -4 2k = 1) + (ks — 1)
=2%,+ 2%, +-- -+ 2ky + k; 4+ 1. (3.28b)

It is only left for us to perform the » mergings (3.27) forg =v,v — 1, ..., 1.
As each merging involves N products and N sums, the total number of
operations of each type is vN or

N log, N. (3.29)

The computational complexity of the fast Fourier transform algorithm
(3.27)-(3.28) is thus significantly smaller than that of the direct formula (3.22).

3.3.5. Regression and Binary Digit Inversion

In Fig. 3.13 we have displayed graphically the regression and merging
for the fast Fourier transform for N = 8 = 23 We started in the leftmost
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Fig. 3.13. Regression and merging of the fast Fourier transform algorithm.

column where all the £, depended on all the f,. From there we proceeded to
the second column having two parts, the four f¢,’s depending on the even
f»’s and the four fll,m’s on the odd ones. From here we passed to the third
column which has four pairs of f2,, .’s, each depending on two f;’s. Last,
we have eight f;?sk2k1 which are f,’s. Note particularly that the string of binary
digits kskok, is the binary number representation of n — 1, which is written to
the left of the first column. This is a general property which can be seen from
(3.28b). It should also be noted that the overall shuffling of the entries in the
first and last columns is such that it inverts the digit order of the binary repre-
sentation of the row label. The merging procedure can be followed in Fig. 3.13
from right to left: each of the pair of ﬁ?zkl,m’s, m = 1,2, is constructed
from the rightmost column entries to which it is connected, the upper link
being multiplied by the phase in (3.27). Following suit, each of the f,}bm’s is
obtained through the merging of the f,?zkl,m’s to which its block is linked
and similarly for the f£,’s.

3.3.6. A Short Survey of the Literature

Figure 3.14 shows a FORTRAN program which calculates the direct
and inverse Fourier transforms using the FFT algorithm. This program is
not the ultimate in computation efficiency but should be easy to implement
by the interested reader on his local computer. The software in most com-
puting centers includes more than one version of the FFT. These are variants
which follow either the Cooley-Tukey or the Sande-Tukey algorithms
(Cooley and Tukey, 1965; Gentleman and Sande, 1966). Other fast algorithms
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SUBROUTINE Fﬁ(X.N,NU,IT) FUNCTION INV(J,ND)

COMPLEX X(N),E,T J1=J
M=N/2 INV=0

D0 1 I=L,NU
=02

':INV*INV*2+J1-2*J2

1

U=1./SQRT(FLOAT(N)) “ 1.J1=02
D0 3 1=1,NU RETURN
1002 J=1,M END

A=INV(K/2**NUL,NU) *6. 283185/N
E=CHPLX(CGS(A) Z‘SIN(A))

=X(LW*E
XM =X(L)-T Fig. 3.14. A FORTRAN 1V subroutine
X=X(D)+T which performs Fourier

2 K=kel , transformation through the
. - FFT algorithm. It converts
IEITM 60161 the input complex vector X
k=0 of dimension N and NU =

NU1=NU1-1 logs N into its Fourier

3 M=M/2 X e
transform if IT = 1; if

DO 4 K=1,N IT = —1. th tor X i

. JEINVKLNDHL = =& LIewector IS
 FUlEOGGOTOE , converted into its inverse
o Fourier transform. The
XUO=X() ' function INV effects the
X(D=T binary bit inversion. Note

4 CONTINUE that the output component

DO 5 K=1,N X(1) stands for the Nth =
) Oth Fourier coefficient and
that all other components
are correspondingly shifted

to one higher value.

have been developed for arbitrary N which work on similar principles
(Bergland, 1967, 1968, 1969; Rader, 1968; Singleton, 1968). When the data
arrays are very large and exceed the machine memory storage capacity, the
use of auxiliary memory devices such as disk or tape has to be integrated
properly into the algorithm. These problems have been tackled (Buijs, 1969;
Singleton, 1967). Convolution and correlation of finite signals can also be
profitably handled through the FFT in their many applications. The calcula-
tion of the convolution (3.8) or correlation (3.18) of two vectors involves N2
complex products. As the FFT takes only N log, N operations, we may
proceed to use the Fourier transform first for the two coordinate sets,
multiply them in the ¢-basis [Eqgs. (3.7b) or (3.16)], and then Fourier-
transform back. The number of operations in this roundabout way is
3N log, N + N, which is less than N2 for N > 16.

The actual applications of the fast Fourier transform algorithm cover a
very wide range. Some examples of what can be found in the literature are the
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articles by Stockham (1966), Singleton and Poulter (1967), Welch (1967),
Glisson and Black (1969), Liu and Fagel (1971), and Becker and Farrar
(1972). For the reader interested in a more detailed exposition and bibliog-
raphy of this rapidly growing field and its applications, we suggest the book
by Brigham (1974) as well as the special issues of the IEEE Transactions on
Audio and Electroacoustics AU-15 (June 1967) and AU-17 (June 1969).

3.4. The “Limit>> N — co: Fourier Series and Integral Transforms

Up to now we have dealt with complex vector spaces ¥~ with N arbi-
trary but finite. We shall now let N grow without bound and examine the
behavior of the Fourier transform. The “limit” N — oo is not meant to
imply that ¥V tends toward a ““#"®”* since insofar as vector spaces are con-
cerned, no convergence of the kinds familiar to the reader is defined. Yet for
coordinates, inner products, and norms such a limit makes sense if focused
properly. Moreover, it provides a reliable intuitive grasp of the properties of
infinite-dimensional vector spaces.

3.4.1. (2N + 1)-Dimensional Spaces

For the following, it will prove convenient to consider (2N + 1)-
dimensional spaces ¥ 2V +1 where basis vectors are numbered by indices with
the range — N, - N+ 1,...,—-1,0,1,..., N — 1, N. The Fourier trans-
forms between the coordinates of a vector in the e- and ¢-bases [Egs. (1.51)]
become

Fu= QN + 1)-12 i £, exp[2minm/(2N + 1)], (3.30a)
fo =N + )12 i Foexp[—2minm/2N + 1)].  (3.30b)

Recall that, to start with, Egs. (1.51) defined the range of the indices as con-
gruent modulo the dimension of the space. We shall now introduce a new
indexing system for the vectors in the ¢-basis, defining

x =m(2m + 1)/2N + 1), (3.31)
so that, for m = — N, ..., N, x will range in steps of .
Ax = 27/2N + 1) (3.32)

from —# + Ax to =, and while the numbers m are considered modulo
2N + 1, the numbers x are considered modulo 2. We shall also define the
set of quantities related to the ¢p-basis coordinates of f as

f) = [@N + 1)/2=]2f,, (3.33)
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which can be seen as a function f of 2N + 1 equidistant points on a circle.
When N grows without bound these points will become dense on the interval
(—m, 7]; the point — is excluded from the interval as it is congruent with .
Changing dummy indices, Egs. (3.30) appear as

J&x) = @2m)-2 i fr exp(inx) exp[—inm[(2N + 1)], (3.34a)

n=-N

b

fir=0m " > Axf(x) exp(—inx) explinm/(2N + 1)]. (3.34b)
x=-n+Ax
The substitutions (3.31)—(3.33) can also be made for the Parseval identity,
Eq. (1.43), which now reads

N n
€= > figa= 2 Axf(x)*g®). 3.35)

n=-N x=-n+Ax

3.4.2. Fourier Series

The reader can see that Egs. (3.34) and (3.35) lend themselves quite
naturally to the limit N — co: the sums over x have the right form to be
turned into Riemann integrals. Some precautions must be taken, though.
We introduce first, for every function A(x) of the (discrete) variable x, a step
function h,(x") over the continuous variable x” by

hon(x") = h(x), x' e (x — Ax/2, x + Ax/2]. (3.36)

See Fig. 3.15. By this device, the >, Ax--- can be turned into J'”_n dx'- - -.
We can assume (at this stage) that the limit of /,(x") as N — co is a “proper”’
function A(x") of x’, e.g., a continuous function with a finite number of
discontinuities so that it is Riemann-integrable. Next, Eq. (3.35) for f = g
states that the sum of the now-infinite series in the middle term must equal

P b [N
AN aman
BT } Soyyob
I £ 47 1
YR ¥ oA # R R]
& Rt H — gt o B
1 : :
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Fig. 3.15. An N-step function in (—m, ] approximating a continuous function in the
limit N — .
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the assumed definite value of the integral. The coefficients {f,}7- _, must
satisfy some summability condition. They cannot all be equal, for instance.
A finite number may be nonzero, or we may ask for appropriate decrease
conditions for f, as n — co. In particular, we shall agree not to allow any f,
“near to” N to keep a finite value as N — co. If these (admittedly vague)
conditions are met, the sum in (3.34a) becomes a series where the exponential
factor exp[win/(2N + 1)] -1 as N — oo, and the same happens in (3.34b).
The pair of equations then becomes

f(x) = Qm)~12 i [r exp(inx), (3.37a)

fo = @m)-1 f dxf(x) exp(—inx), n=0, +1, +2,.... (3.37b)

The first of these is the Fourier expansion of f(x) in terms of the functions
exp(inx), ne Z (the set of integers), with Fourier partial-wave coefficients
{futnee. These coefficients can be obtained from the original function by the
second equation. Equations (3.37a) and (3.37b) are also referred to as the
Fourier synthesis and analysis of the function f(x). Finally, the Parseval
identity (3.35) becomes

tg)= D fig =f dxf(x)*g(x). (3.38)
The precise range of validity of the Fourier series pair (3.37) and Eq. (3.38)
is given by the Dirichlet conditions, which will be proven independently of
this construction in Section 4.2. We would only remark here that when f(x)
is a trigonometric polynomial of degree M, i.e., when the sum in (3.37a) is
finite and # bounded,

fulx) = @m)7¥2 > f, exp(inx), (3.39)

Inl<M

then (3.37b) can be immediately verified by multiplying by (27) ~ /2 exp(— imx)
and integrating x over (—, 7), using

[i(n — m)] " texpli(n — m)x]|%, = 0, n # m,

dxexpli(n — m)x] =< =
f—-n pli( ]l f dx = 2w, n=m.

(3.40)
Indeed,

(2m)-112 f dfio2) exp(— a3

= (2m)? Z f,,j_n dxexpli(n — m)x] = f,, (3.41)

Inl<M
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and (3.38) can be similarly proven using (3.37b) and (3.40). In restricting the
degree of the polynomial to finite M, we have avoided the question of whether
the infinite series (3.37a) converges to f(x) for all x and what to do if the series
diverges.

3.4.3. Basis Vectors

Since in Part IT we shall tackle these questions using elements of func-
tional analysis, let us have a closer look here at the vector space aspects of
¥+l as N grows without bound. Parallel to the redefinition of the coor-
dinates (3.33) of a vector f, we define the basis vectors

8, =[N + 1)/2w]*2ep,, (3.42)

where x and m are related by (3.31). These also constitute a basis for ¥ 2¥+1,
with coordinates

(&ns 8,) = (2m) 12 exp(—inx) explinm/2N + 1)] = (8, €,)*. (3.43)
They are a set which is orthogonal, but not orthonormal, as
(sx’ sy) = Sx,y(zN + 1)/277 = 8.ac,y/Ax, (344)

where 8, , is the Kronecker & in the indices x and y. The coordinates of a
vector f in the §-basis are thus

J(x) = (8, f) = (%Z Ayfi (y)sy) = i Ayf(9)Bx: 8,).  (3.45)

y=-n+Ay

‘3.4.4. The Dirac

Whereas all expressions before (3.42) had a clear meaning as N — oo,
step functions (3.36) being used and assumed to converge to Riemann-
integrable functions, the step function of y corresponding to (8, 8,) for
fixed x is a rectangle of width Ay = 2#/(2N + 1) and height 1/Ay (thus of
unit area) centered in x. As N — oo, Ay — 0. If we take Eq. (3.45) seriously,
it tells us that such a “function” in the “limit N — oo has the properties

Bk = 3) = (62, ) = 5y = ), (3.46)
dx—»)=0 for x # y, (3.46b)
[* @36 = »10) = 1) = 6. 1. (3.460)

The symbol 8(x — y) defined by (3.46b) and (3.46¢) is the Dirac 8. (The
definition can be made slightly weaker.) It is not a true function. In the
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rigorous framework of distribution theory, the second equality in (3.46c) is
the definition of &, as a functional or distribution, i.e., a mapping which
assigns, to every function f in some class, a number f(x). The intuitive
development we have followed here is one of the standard approaches in
mathematical physics, which views the Dirac 8 as the symbol indicating the
limit of a sequence of integrals containing the continuous function f(x) and
a rectangle function 8y(x — y) of unit area centered on x whose width
vanishes as N — co. This is equivalent to the first equality in (3.46c); that is, it
“punches out” the value of the test function f(y) at the point x.

From the point of view of vector analysis, the function f(x), x € (— =, 7],
can here be seen as the coordinates of a vector f in the 8-basis [second equality
in (3.46c)], while its Fourier partial-wave coefficients {f,},.o are the coor-
dinates of the same f in the e-basis.

3.4.5. Fourier Integral Transforms

Another way in which the N — oo ““limit”* of the finite Fourier transform
leads to integral transforms is the following. Consider again the pair of
equations (3.30) in ¥2¥*! for growing N and introduce new indexing
variables in both the - and ¢-bases as

q=[27/2N + D]*?m, p:=[2a/2N + 1)]*n. (3.47)
For n,m = —N, ..., N, q and p will correspondingly range over 2N + 1
points spaced by decreasing intervals
Ag = [27/2N + D2 = Ap (3.48)
between, approximately, +(7N)'2. Now define the functions

f@ = [N + D2a]fn,  f(p) = [@N + D271, (3.49)

on these points. Substituting these expressions into (3.30) and following the
same procedure as before in defining step functions fy,(q) and fix,(p) for the
continuous variables g and p (Fig. 3.15), assuming that as N — co these step
functions converge to Riemann-integrable functions in the expanding
integration interval and substituting f dg for 3 Ag, etc., we arrive at

1@ = @y [ dof(p) explivg), (3.500)

@) = oy [ daf@ exp(-ion),  gped  (3:50b)

From the Parseval identity (1.43) we find similarly

[eo}

G- aas@=| aerm. @:51)




Sec. 3.4] Chap. 3 * Further Developments 135

These equations are the analogues of (3.37) and (3.38). The function f(p) is
the Fourier integral transform of f(q), and the latter the inverse Fourier
transform of the former. A closer examination of the validity of (3.50)—(3.51)
for different classes of functions, not necessarily integrable in the sense of
Riemann, will be undertaken in Part III. Again, orthogonal bases {§,} and
{8,} can be defined so that f(q) = (8,, f) and f(p) = (8,, f), leading to Dirac
8’s with properties (3.46b) and (3.46¢) on the full real line Z.

The description of infinite-dimensional spaces as “limits” of finite-
dimensional ones has been made here with the purpose of giving an intuitive
grasp of the subject. In Parts II and III a physicist’s a la Dirac approach will
be given. We shall not embark here on a mathematically complete survey of
this topic in part because of space and time but mainly because once the
overall picture is drawn and the relevant pitfalls are pointed out, the tools of
infinite-dimensional vector analysis can be used with the same operational
facility as in the finite-dimensional case.






